
AD-A092 260 NAVAL POSTSRADUATE SCHOOL MONTEREY CA F/B 9/0

AN ADA LANGUAGE MODEL OF THE AN/SPY-IA COMPONENT OF THE AEGIS G--ETC(U)

UNCLASSIFED F jPS52-80-011 NL

EEEEEEEEEEEEEE
EEIEIEIEEEEE*flflflIIIIII

jl1.25 .6~ I

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STAIOARCS-tg63-A

NPS52-80-011

NAVAL POSTGRADUATE SCHOOL
Monterey, California

DTIC

AN ADA LANGUAGE MODEL OF THE
AN/SPY-lA COMPONENT OF THE

AEGIS WEAPON SYSTEM

by

Earl E. McCoy

August, 1980

LU

Approved for public release; distribution unlimited

Prepared for
Naval Postgraduate School
Monterey, CA 93940

80 12 01 240

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Rear Admiral J. J. Ekelund Jack R. Borsting
Superintendent Provost

Reproduction of all or part of this research is authorized.

EAR E. MCcCTT
Visiting Assistant ProfessoroComputer Science

Review by: Released by:

DE a irman I -R9ODE
De rtme Computer Science Dean of Research

•I
'A

Uncl assifiJed
SSCuRITy CLASSIFICATION OF THIS PAGE Ulur Do*a aew

REPORT DOCUMENTATION PAGE 31105 COWLKTINSO

2. VT ACCEWIGEN NO 3. RECIPINT'S CATALOG NUJM99R

STYPE OF REPORT a PERIOD COVERED

jNGUAGEiODDEL OF THETehia e

A YSEOF S.E PERFORMING RDn. REapo1noMuma

OEarlE./McCoyITt
*PERFORMING ORGANIZATION NAME AND ADDRESS 10- :1IOAVj.R YRjj,9TS

Naval PostgraduateSho
Monterey. California 93940 SEATASK Project No. 80-109

11I. CONTROLLING OFFICE NAME AND ADDRESS ~,~UEftfA?&TOAXE
* Naval Postgraduate School -J II AI9 K)O

Monterey. California 93940 13. 4 MER OF PAGES

141. MONOITORING AGENCY NAME A AOOARWII d~iftme h C..silaOi~e)o.I.SCRT CLASS. (of Mo NoPIJt

Unclassified
IS&. WIk~IC ATION DOWNGRADING

IS. DISRIDUTION STATEMENT (ofSI U epe0
I o

Approved for public release; distribution unlimited

17. DISTRISIUTIOM STATEMENT (of B Meea 696,00 NOW in~ Mo*. if 4afla~ meA RGm*1)

IS. SUPPLEMENTARY NOTES

IS. KEY WORDS (Ceunu. fef m be D affof SU00a AbaMO' "me b amle

ADA, Specification Languages, Modeling, Systems Design, SPY-i, AEGIS

S.ANNIRACT rMebes -0"od ~Of e"O W .UP d F Ii Osow

An ADA-like language is proposed as a high level, specification oriented
modeling tool. It is asserted that the very early system design modeling tasks
are typically not given adequate stress, with the result that poor system de-
signs are carried forward into the mid design phases. A lack of suitable MO-
deling tools is likely one reason, and so an ADA-like modeling technique is
proposed. It has many of the properties of specification languages, including
the ability to be machine processed to -indicate incomplete or inconsistent (coi t)

IO PA 147 EDITON I Nv is.UUSLET Unclassified

Unclassified
.LWUITY CL.ASIFICATION OF TI1S PAG0(WIMO Doe EantfmQ

system. The unclassified portions of the SPY-1 radar component of the AEGIS
weapon system is used as a test vechicle to illustrate the modeling technique.

S

Unclassified
69CURITY CLAISOICATIO14 OF THIS PA49AUIm Daft anf...

_ _ _ _ _ ii.

ABSTRACT

ADA-like language is proposed as a high level, specification

oriented modeling tool. It is asserted that the very early system design

modeling tasks are typically not given adequate stress, with the result

that poor system designs are carried forward into the mid design phases.

A lack of suitable modeling tools is likely one reason, and so an ADA-like

modeling technique is proposed. It has many of the properties of speci-

fication languages, including the ability to be machine processed to indi-

cate incomplete or inconsi +.int systems. The unclassified portions of the

SPY-1 radar component of the AEGIS weapon system is used as a test vechicle

to illustrate the modeling technique.,/;

, oa naM'

I-

' ., -- ,

I Purpose of the Research

This research evaluates the use of the new DoD programming

language ADA (Ichbiah79, Wegner801 (or an ADA-iike language) as a

modeling technique for large scale multiprocessing computer sys-

tems. In particular, the research is to evaluate the effective-

ness of such a modeling technique vis-a-vis other, more conven-

tional techniques such as flowcharts, block diagrams, and narra-

tives. The measure of effectiveness is a qualitative assessment

of its ease of use and understandibility by designers and "custo-

mers" (the purchasers of the modelled system).

II Background

The AnA language is currently undergoing final definition as

the new standard DoD embedded systems language. ADA, when

adopted, will be the standard language for programming computers

that are components in weapon systems. The language incorporates

the latest concepts in algorithmic language design, including

modern control structures, user-defined data types, and the abil-

ity to coordinate concurrently executing "tasks". As of this

writing no production AI)A compiler exists, and so the ADA pro-

grams included in this report have not been verified as being .J

syntactically or semantically correct.

A major problem with all large scale systems (multiprocessing

systems like AEGIS in Particular) is the early design phase in 4

which customer requirements are specified. Typically system

development is retarded and budgets exceeded because the system

-2-

is incompletely or incorrectly specified.

One reason a system may become incompletely or incorrectly

specified is the lack of sufficient communication between the

designers of the system (technical persons) and the buyer or cus-

tomer of the system (the persons with the problem the system is

meant to resolve). Due to their different knowledge of the prob-

lem these two qroups have a different perception and understand-

inq of the problem, and yet the design of a successful system

largely depends upon how closely the perceptions can be brought

together. Unfortunately, because of these misperceptions, the

designers proceed with a system that satisfies the problem as

they understand it, and the customer is unaware of this because

of the lack of communication. kt some point the difference is

discovered, but usually after much effort has been wasted. Retter

communication is a solution to this problem, and a candidate

mechanism for this purpose is a modelinq technique more under-

standable by both the designers and the customers. Computer sci-

ence specialists, known as software engineers, have been and are

developing tools to deal with this problem (Teich77, Davis79,

Jones79]. Collectively these tools are called "specification

languages", and are usually interactive programming-like

languages that can be computer processed to indicate specifica-

tion related problems.

It is asserted here that knA (or an 4DA-like lanquage) can be

used as a specification tool. This results from the ability of

40A to allow top-down proqram Aevelopment, in which functionality

can be omitted at a high level, only to be incorporated at a

tkI

-3-

later time. In addition, ADA incorporates control structures for

multitasking, in which concurrently executing tasks are coordi-

nated in a specified way. Information may be passed among the

tasks in a manner which is independant of the underlyinq computer

architecture (shared memory or distributed processing). If ADA

proves useful in this role the conversion of the specifications

into executable code would be less costly and quicker than other-

wise possible, a worthwhile objective.

Other commonly used programming languages, such as PL/I, For-

tran, or CMS-2, could also be a basis of a modeling tool. However

ADA has most of the good features of those languaqes and some

additional features as well. This is not unexpected as hT)A is

meant to be a contemporary refinement of all that is known about

programming languaqes. For example ADA's multitasking capability

is a more modern mechanism than the equivalent in PL/t. Thus ADA

aopears to be the best notation upon which to build a high level

modeling tool.

In the remaining sections of this report the derivation of an

ADA-like model of SPY-l is accomplished. The narrative accompany-

ing the derivation is meant to exhibit the derivation thought

process, and assumes at least some familiarity with contemporary

programming language practices and concepts.

III The Research Vehicle

The SPY-i radar component of the AEGIS weapon system is

chosen as a research vehicle for several reasons. Pirst, it is an

I
. = _ i l| i il V

--4 ° "v . . : *" S * , * '-. --
'

-4-

ongoing research project at the Naval Postgraduate School, where

three faculty members and several graduate students are investi-

gating a microprocessor based multiprocessinq implementation of

SPY-i. Secondly another faculty member (the author) has the

requisite knowledge of ADA and is interested in the research

topic. Fortunately enough unclassified documentation of SPY-i

exists for meaningful research to be carried out. Finally the

project is small enough to allow current fundinq to be used.

The source of information for the research is almost entirely

from a classified report (WS-105441 with all the classified pages

removed. The omitted information results in some gaps in the

study, but not enough to affect the modeling effort. In the

remaining sections this document is referred to as the "refer-

enced document" or "referenced source".

In the next section an overall summary of the SPY-i radar

system and its interface with other &EGIS components is

presented.

IV The SPY-1 Radar

This section describes the SPY-1 radar system at the highest

level. The information is derived from the document referenced

above, consisting mostly of a narrative with accompanying tables

and diaqrams.

At the highest level the SPY-1 interfaces with other AEGIS

components, namely a Command and Control System, a Weapons ron-

trol System, an Ooerational Readiness Test System, a Missile

... .- ... Ig 7A

-5-

Datalink System, and a Gun Fire Control System. Interfaces are

defined to these components in the form of data structures; in

some cases the details are classified. In addition an interface

with the AEGIS Tactical Executive System is maintained. Listing

1 shows how ADA might be used to describe this level of detail.

PACKAGE spy_1 IS
USE interfacetypespackage; -- global messages
PROCEDURE c&d interface (parameters);
PROCEDURE wcs interface (parameters);
PROCEDURE orts interface (parameters); -- classified
PROCEDURE gfcs-interface (parameters); -- classified
PROCEDURE atesinterface (parameters); -- classified

PRIVATE
-- declaration of all private data types
-- and private data objects, not important
-- at this point in the modeling effort

END spyl;

Listing 1. An ADA package specification for SPY-i.

The reader is reminded that the ADA-lIke model derived in the

following paragraphs only represents a logical explanation of the

SPY-i radar system, and that no particular underlying computer

architecture need be assumed. Thus it is not meaningful (at this

stage of modeling) to think of procedures or tasks as beinq

dynamically loaded, etc.; the essential point is that they are

invoked when needed and execute according to the ADA language

semantics.

Before discussing this ADA-like code, the notion of a "pack-

age" is defined. In ADA a package is a means of grouping related

items together, typically data object declarations and subproqram

declarations. A package is referred to, within the code of some

other programming unit, by means of a USE statement that effec-

tively inserts the "packaged" statements. Thus a package is not

JAM.

directly executable, but rather contains executable units (pro-

cedures and/or tasks) that may be invoked from outside the pack-

age. It may, however, have an executable initialization com-

ponent. A package may be divided into two parts, a "specifica-

tion" part that is "visible" to the external environment, and a

"body" which Is hidden from the external environment. Thus the

"user" of the package can only access the material exhibited in 4

the specification part.

The code shown is not exactly ADA; the word "parameters"

would have to be replaced by the actual data objects being

passed. Double dashes indicate the start of comments that con-

tinue until the end of the line. Not shown (because it is not

relevant at this time) is the declaration of private data types

and objects; such types and data objects would be known to the

users of the SPY-l package but their underlying structural com-

ponents would not be accessible. The definition of the various

procedures will be shown elsewhere.

How is the SPY-i package used in a real ADA programminq

environment? It would be embedded in another "AEGIS package",

where it -%,ld be one of several packages, along with other code.

This is beyond the scope of the research project and so is not

pursued further, except to point out the various procedures would

be invoked from within the encompassing AEGIS package.

The details of the messages that can be sent and received via

the procedures and the corresponding procedure bodies are

described in a corresponding package "body", as is shown in List-

Ing 2. This is a companion component the specification

-7-

package shown in Listing 1; together they will completely define

the SPY-I package.

PACKAGE BODY spy_1 IS
-- Local type and object declarations and
-- definitions of the five procedures whose
-- headers are in the package specification
-- shown in Listing 1. These would, in turn,
-- call entry points in the task immediately
-- following.

PROCEDURE orts interface (...) IS
-- invoked from an ORTS task

BEGIN

initialization command; -- invokes the
-- spy_lcontrol task

END orts interface;
TASK spy 1 control IS

-- procedure and entry declarations, etc.
TYPE ... -- message type declarations
ENTRY initializationcommand;
ENTRY task command; -- other entries symbolically

END spy 1 control;
TASK BODY spy_1_control IS

-- local declarations
BEGIN
ACCEPT initialization command; -- from the

-- ORTS interface procedure shown above.LOOP

SELECT
ACCEPT task-command; -- others

END SELECT;
END LOOP;

END spy_1_control;
BEGIN -- initialization part

INITIATE spy_1_control; -- starts this task
END spy_l;

Listing 2. ADA representation of SPY-I package body.

The program shown in Listing 2 is a very high level represen-

tation of the overall SPYLi system, and so is described in some

detail in the following paragraphs. Note that within the SPY-i

package body the executable portion consists of at least one

-8-

statement (between the package body BEGIN and END delimiters),

namely "INITIATE spy_l_control". In the declarative portion of

the package body is defined the "spy_lcontrol" task that is

started by the initiate command. This task will control the

overall execution of the SPY-i system, doing most of what the

"ates" component would do in the current SPY-i system. By defini-

tion a task is a procedure that executes in parallel with other

procedures. They can be initiated (started) or aborted (stopped),

and can be made to coordinate their activities with other pro-

cedures.

Thus a controlling task is started from the SPY-i package

body, and so execution of the task body also shown in Listing 2

is initiated. The first statement within the task body is an

"ACCEPT initialization command" statement. An ACCEPT statement

forces a "rendezvous" with another task or procedure that is exe-

cutinq a corresponding "call" statement. The label

"initializationcommand" is an entry point in the spy 1 control

task, and is called from one (or more) of the procedures speci-

fied in Listing 1. As shown in Listing 2 the entry point is

called indirectly from a task in ORTS (Operational Readiness Test

System, another component of the AEGIS system). Until the ren-

dezvous is accomplished the calling procedure is halted; in this

case the spy_l_control task tests for an appropriate initializa-

tion command (indirectly received from ORTS); it does not proceed

until the command arrives. In the example shown no messages (in

the form of a parameter list) are passed between calling and

called tasks; this additional detail will he added later.

-9-

When the initialization command is received the rendezvous is

said to have occured, and after some processing in the

spy_1_control task both the calling and called tasks or pro-

cedures are allowed to proceed independently of each other. Ns

shown in Listing 2, this results in the enterinq of an infinite

loop (LOOP --- ENT) LOOP statements). It is not really an infin-

ite loop because the loop body contains other ACCEPT statements,

shown symbolically by the "ACCEPT taskcommand" statement. In

this manner other SPY-1 tasks are initialized, coordinated, and

aborted. These other tasks are discussed in a following section.

V The Rendezvous Concept

It is important that the rendezvous concept be fully under-

stood before proceeding. Consider two proqrams (modeling some

procedures) that require interaction to accomplish some common

goal. Typically one program may want to invoke the other program

to carry out some specific job on its behalf.

Several mechanisms for accomplishing this interaction have

been devised. ADA adopts a "rendezvous" concept, in which a cal-

ling program must know something about the program it wishes to

invoke, but in which the called program need not know anythinq

about the calling program. Thus the mechanism is one sided in

that sense. This is clearly superior to a symmetrical situation

where both parties to the interaction must know of each other;

the rendezvous concept allows a library of programs to exist and

be called as needed, whereas the symmetrical mechanism does not.

.... ..

- 10 -

Consider the situation in which a data structure represents

some entity that must undergo certain processing during its

existence. In a grocery store context a customer may require the

services of a checkout stand, for example. Here the customer must

enter a queue (possibly empty) to await his turn for service.

While waiting the customer is necessarily idle, in the sense he

can not do additional shopping or anything else. When prior cus-

tomers have been serviced the particular customer may be pro-

cessed (a modification of the data structure) and then released

to some other environment. In the modeling technique used here we

say a customer attempts a rendezvous with the server; if the

server is not available then the calling entity must wait.

The rendezvous technique provides additional mechanisms

allowing priority queues, pre-emption, and availability of a set

of resources to determine service response. None of these is dis-

cussed in this report. However the rendezvous concept allows

classical problems such as the consumer-producer, reader-writer,

dining philosophers, etc. to be modelled in a straightfoward

manner.

Again the reader is reminded that nothing in the notation

dictates anything about the underlyinq implementation of the

model on a real set of computers. Thus it is not meaningful to

consider (at this stage) when or how programs are executed; they

are just executed according to the semantics of the ADA-like

language.

VI The SPY-l Control Task

- ii -

In this section the overall structure of the SPY-1 radar

control mechanism is described.

The situation to this point is as follows: within the SPY-1

package a "spy_l_control" task is initiated and waits for an ini-

tialization command from one of the specified procedures. When

an initialization command arrives the controlling task resumes

execution and enters an infinite loop that contains a SELECT

statement that selects among any rendezvous request corresponding

to the kCCEPT statements. In this manner the various component

tasks within the SPY-1 system are initiated, aborted, or coordi-

nated as necessary. The various messages oassed among the tasks

have not yet been explicity shown.

We now address the internal structures of the SPY-1 radar

system. It can be thought of as consisting of various tasks,

executing in parallel but in a coordinated fashion, each sending

and receiving certain messages. Most of this messaqe passing and

coordination is strictly from within the SPY-1 system, but in

addition there is the external communication and coordination

with the other AEGIS system components. It is the latter that is

of primary interest here; we are most concerned in modeling the

interface of SPY-i with these other components, and in particular

the logical relationships of the interfaces and the internal

tasks. Recall that it is precisely these relationships that are

significant in the early design stages, and that it is a premise

of this research project that conventional notations are weak in

this regard, and that the modelinq technique used here would be

an improvement.

- 12 -

SPY-1 must interface with five external AEGIS components as

is shown by Listing 1: command and decision, weapons control,

operational readiness and testing, gun fire control, and AEGIS

tactical executive systems. Each of these interfaces consists of

several different message types. Each different message type

requests some particular service from the SPY-l radar system.

One example was already illustrated in the previous section by

the initialization command indirectly from ORTS. Consider now how

these messages might be modelled in an 4DA-like notation.

The referenced source document indicates how the various

messages are transmitted through the several interfaces; here we

concentrate upon the unclassified ones. For example Tables

3.4.17-I and 3.4.17-111 in the reference document indicate the

inputs and outputs, respectively, of the command and decision

interface. Each of the message types has a description of its

message content fields, scaling precision, data rate, conditions,

operator intervention requirement, and its destination or source;

these are now modelled in an ADA-like notation.

According to the reference document, one of the messaqe con-

tent fields is a "message type" field; presumably it is this

field that designates any particular messaqe as containing data

of a particular format. rn the modeling technique employed here

it is only necessary to use the contents of this field to charac-

terize the record. This can be accomplished by using a record

structure of the "variant" type, in which a particular value of a

variable indicates the record structure that follows. In this

SPY-1 model we choose to define separate record types for each

- -a o-

- 13 -

interface, and indeed for each direction of data flow within each

interface. This is done so that the semantics of the modelinq

notation can be used to our advantage, namely the ability of

"strong type checking" to enforce only leqal sendinq and receiv-

ing of messages.

TYPE c&d interfaceinput IS
RECOR5

kind : (track data, data ack, burnthrouqh rpt,
track-acc rei, radar status, burnthrough_acc rej,
redundant-track, radar load status, rsc status,
radar doctrine); -- an enumerated data type

CASE kind OF
WHEN track-data ->

-- various field declarations
WHEN dataack ->

-- varous field declarations

WHEN radar-doctrine a>
-- various field declarations

END CASE;
END RECORD;

Listing 3. k variant record declaration.

An example of the variant record structure mechanism is

shown in Listing 3. The record structure consists of a field

indicating the kind of message stored in the remaining part of

the structure, in this situation depending upon the value of the

variable "kind"; each "when clause" declares the fields within

each message type (not shown in Listing 3; see the appendix for a

complete example). Similar record structures are defined for the

command and decision output messages, and fot all the other

interfaces.

The record definition described above is of a tyne of record.

In any particular procedure or task variables of that type may he

- 14 -

declared and then manipulated as appropriate. For example, in a

sending procedure the declaration of a variable "messaqe" (by a

"message : c&dinterface input" statement) might he used to

define a particular data structure in which its component fields

can be assigned specific values. The message could be sent by

invoking an appropriate procedure:

c&d_user servicesinput (message : OUT c&d interface'input);

Here a procedure or task entry name is written followed by its

output argument list; the "user services" notation is from the

reference document. The direction of data flow is "out" from the

calling procedure's point of view. The "c&d userservicesinput"

entry name (or point) must be declared somewhere in an appropri-

ate task or procedure.

Before revising Listing 1 to include message parameter

detail, a convenient form of grouping related information is

employed that enables only important details to be exhibited at a

particular place. The less important detailed information is

placed elsewhere. Listing 4 shows a packaqe of type statements,

each type declaration is a record definition similar to that

shown in Listing 3. Details of the variant record structure are

omitted.

Listing 5 shows a redefinition of the SPY-i package specifi-

cation shown in Listing 1. Here particular procedure headinqs are

defined to include the interfaces in both directions. This allows

messages to be sent in either direction without any interdepen-

',I

- 15 -

PACKAGE interfacetypespackage I9
TYPE c&d interface input IS

-- a variant record structure
TYPE c&dinterface output IS

TYPE wcs interface input IS

TYPE wcs_interface output 1S

TYPE ortsinterface_input IS

TYPE ortsinterface_output IS

TYPE qfcs_interfaceintput IS

TYPE'qfcsinterfaceoutput IS

TYPE atesinterface_input IS

TYPE atesinterface_output IS

END interface typespackaqe;

Listing 4. A package of data type definitions.

dence upon each other. These ten procedures replace the five pro-

cedures of Listing 1. 4 corresponding redefinition of the pro-

cedure bodies (which are enclosed within the package body) would

be required. Within each procedure body a message type would be

determined and an appropriate entry point of the controllinq task

called, where in turn other appropriate task entry points may be

called, thereby forcing appropriate SPY-1 services to he accom-

plished.

Again the private type definitions are omitted because they

represent internal data structures not needed by the interface

with the other AEGIS components. Note the use of the USE state-

ment to enable the bulky definitions to he placed elsewhere (in a

separate packaqe).

- I -

PACKAGE spy 1 IS
USE interface typespackage;
PROCEDURE c&d-user servicesinput

(m : IN c&dinterface-input);
PROCEDURE c&d user services output

(m : OUT c&d interface-output);
PROCUDURE wcs user -ervices input

(m : IN wcs interfaceinput);
PROCEDURE wcs user services output

(m : OUT wcs interfaceoutput);
PROCEDURE orts user services input

(m : IN orts interface-input);
PROCEDURE orts user services output

(m : OUT orts interface output);
PROCEDURE gfcsuser services input

(m : IN gfcs interface-input);
PROCEDURE gfcs user-services output

(m : OUT gfcs interfaceoutput);
PROCEDURE ates user servicesinput

(m : IN atesinterfaceinput);
PROCEDURE ates user servicesoutput

(m : OUT atesinterfaceoutput);
PRIVATE

-- declaration of private data types
ENr) spy_1;

Listing 5. h revision of Listing 1.

We now address the internal tasks of SPY-1. Previously a

"spy_1_control" task was defined and indicated that it controlled

and coordinated other tasks by means of ACCEPT statements embed-

ded within an infinite loop.

Section 3.3.5.2 of the reference document lists the various

functions performed by the SPY-1 radar. These functions are

divided into two qroups: a "tactical function qroup" and an "ele-

ment test function group". These are shown in Tables 1 and 2,

respectively.

Listing S shows a skeleton representation of a SPY-i func-

tion in the form of a task. Entry points (not explicitly shown)

indicating how external tasks may interact with the

- 17 -

Initialization
Search Management
Track Management
Frequency Management
Radar Scheduling
Cross Gating
seam Stabilization
Radar Input Processing
Radar Output Processinq
Detection Processing
Track Processing
ECM/Clutter Processing
Track Association
Load Evaluation
missile Communications
Historical Recording
Switch Action and Display Processing
Video Formatter

Table 1. SPY-1 Tactical Functions.

"searchmanagement" task are of crucial importance; the reference

document (or at least the unclassified Part) does not indicate

these details. Similar tasks would be defined for all the func-

tions listed in Tables I and 2.

It is not important at this stage of modeling to know the

details of how these functions work; the statement of what must

be accomplished is of higher priority at the early design staqes.

However it is the correct interaction of these functions that is

the next highest priority, certainly higher priority than the

details of their algorithms. For this reason we now address the

interaction of these functions.

The ramification of modeling the interactions is the defin-

ition in the ADA-like notation of task entry points that can he

called in the SELECT statement in the "spy-l-control" task of

Listinq 2. The placement of the calls to these other tasks within

the various select clauses describes the manner of interaction

a *. S.

-18-

EFT Control
Dynamic Test Targets
Operability and Performance Testing
Angle Calibration Testing
On-Line Scan Tests
Transmitter Power and Phase Test
Signal Processor Fault Isolation Support Testing
Nonmission Tests

Table 2. SPY-1 Element Test Functions

allowed, and the parameter lists indicate the transfer of mes-

sages between the tasks. Before describing the SPY-1 radar in

this notation a review of the ADA notation is presented.

Recall that tasks execute in parallel with other tasks, and

that they contain explicit entry points, and that each entry

point can optionally have a parameter list that affects intertask

communication. From within a particular task (or procedure)

another task may be invoked or called, forcing it (the calling

task) to halt execution until a rendezvous with the called task

can legally occur. Meanwhile, in the called task, execution con-

tinues until the internal logic indicates that the current execu-

tion is completed. At that moment the calling and called tasks

can legally attempt synchronization and, if possible, a rendez-

vous is said to occur. The SELECT statement in the called task

allows the rendezvous to happen by selecting the corresponding

ACCEPT statement clause to be executed; the select mechanism can

force the calling task to remain halted while some particular

code is being executed, after which both tasks may proceed on

their independent ways. Possibly some additional code in the

coordinating task may be executed prior to the next selection by

the SELECT statement. The continuing selection process is

- 19 -

TASK search management (...) IS
-- include any specification details
-- here such as type specifications,
-- subprogram specifications, and
-- entry point specifications.

END;
TASK BODY search management IS

-- local declarations
BEGIN

-- a select statement within an infinite
-- loop accepts calls to this task's entry
-- points, which when undertaken effect
-- various actions on part of the SPY-i
-- system.

END;

Listing 6. A representation of a SPY-i function.

accomplished because (in this case) the SELECT statement is

embedded in an infinite loop.

The reference document does not explicitly indicate the

manner in which the various functions may legally interact,

prohibiting the exact representation of this process in the ADA-

like notation. Figures 3.3.5.3-3 through 3.3.5.3-7 in the refer-

ence document do indicate in block diagram form the flow of

interfunction data (messages) among the various functions. At

any rate the exact sequencing among the functions is believed

classified and so would not be accessible to this study in any

case.

However, since this part of the system model is so vital to

the correct derivation of any complex system (such as SPY-i) and

is so much an important point underlying the usefulness of the

notation, a fictitious characterization of the interaction is

presented. It is included to illustrate how the notation would

appear, and is not to be construed to be an accurate representa-

_A

-

- 20 -

tion of how the SPY-i radar system really works. Listing 7 indi-

cates how the various functional tasks might be coordinated by

the ADA-like notation.

-- appears in the body of "spy_l_control" task
LOOP -- an infinite loop structure
SELECT -- this statement selects among

-- the various "accept" statements,
-- each of which represents a task
-- entry point; note some are
-- are "guarded" by a "when" statement

ACCEPT frequencychangerequest (...) 0
-- these statements are executed before
-- the rendezvoused tasks are allowed
-- to proceed independently

END;
-- these statements are executed before
-- any other selection of a rendezvous;
-- typically other tasks may be called
-- upon to provide some kind of service.

OR ACCEPT trackstartrequest (...) DO

END;

OR WHEN dwell time_expired ACCEPT
nextbeam request (...) DO

-- this is an example of a guarded
-- rendezvous; the condition must
-- be true before a rendezvous may
-- OCcur

END;

-- other guarded or unguarded accept statements
END SELECT;

END LOOP;

Listing 7. Fictitious SPY-i control task representation.

Within the SELECT statement a series of guarded and unguarded

ACCEPT statements indicate the proper coordination and data

transfer permitted among the various tasks. Guarded ACCEPT state-

ments (having the WHEN predicate) permit a rendezvous only when

.1 - -. -

- 21 -

the predicate is true. In general all tasks are executing in

parallel, but are coordinated by the "spy_1_control" task of

which Listing 7 is but a part. Because the SELECT statement is in

an infinite loop, the controlling task is always "checking" for

the next possible rendezvous. When more than one rendezvous is

possible any particular one is selected at random. If no rendez-

vous is possible (because none is being requested or guard predi-

cates are false) the controlling task just waits. Not shown in

Listing 7 is a particular ACCEPT clause that would allow an ORTS

task (or procedure) to abort or kill the SPY-l radar system,

effectively causing it to exit the infinite loop structure. An

alternative notation for expressing the synchronization of tasks

is presented in [Andler79]; it has the advantage of being more

succinct.

ACCEPT frequencychange_request (m : IN c&dinterfaceinput) DO
saved message := m;
END; -- calling task or procedure may now continue

-- interpret the message and invoke the appropriate
-- set of internal tasks such that the request is
-- carried out; fictitious tasks are illustrated here

CASE saved_message.request OF
WHEN phase_change ->

change_phase (savedmessage.rate); -- task invoked
video formatter ("phase changed"); -- to operator

WHEN freq_change =>
change_frequency (saved messaqe.value);
video formatter ("frequency changed");

WHEN ...

END CASE;
-- this is the end of the accept clause
-- another rendezvous may be selected

Listing 8. Fictitious detail added to a component of
Listing 7.

A further fictitious expansion of the ACCEPT

II-

- 22 -

frequencychangerequest clause portion of Listing 7 is shown in

Listing 8. Again the general process is reviewed: some task

external to the SPY-1 environment makes a request for a SPY-1

service by invoking one of the procedures specified in the SPY-1

package specification. For example the Command and Control com-

ponent may request a frequency change by invoking the

"c&d user servicesinput" procedure with an appropriate message

argument. Within this procedure the message is interpreted and an

appropriate SPY-1 internal function is invoked by callinq an

entry point in the spy_1_control task, whose sole purpose is to

coordinate all such requests. When the spy_1_control task accepts

the call (a rendezvous) the message is saved in a local variable,

and then the calling procedure is released which in turn can

release the task in the command and control component of AEGIS.

meanwhile, in the spy_1_control task the accept clause is con-

tinuinq execution. As shown is Listing 8 the particular request

may be determined by a CASE statement, where the appropriate WHEN

clause can invoke some set of SPY-1 internal tasks (those

corresponding to the functions listed in Tables 1 and 2). For

example, in Listing 8, if the "freq_change" clause is executed

two (fictitious) subtasks of the Frequency Management function

are invoked, presumably adequate for carrying out the requested

service. At this time the SELECT statement may select another

pending request for service.

Even though the reference document does not contain enough

unclassified information to permit the representation of this

controllinq task, it is restated again that it is precisely this

- 23 -

aspect of the early design stages that is among the most essen-

tial to a successful design of a complex interactive system, and

that the advantage of the ADA-like notation proposed here is that

it allows such a representation.

VII Summary and Conclusions

This research study derived an ADA-like model of the SPY-i

radar system to the extent budgetary, reference documents, and

security constraints permitted. The model is confined to the very

highest level, for it is at this level that both system designers

and system buyers (customers) must mutually understand their sys-

tem problems. It is at this level that complex system designs

usually deviate from the path that would lead directly to a suc-

cessful system, primarily due to poor specification and under-

standing of the buyer's problem. The buyer is usually not in the

position to prohibit the deviation because they are not (at that

time) aware of it. By the time the existence of the deviation is

known to either party, much time and effort is usually wasted,

and additional time and effort is expended attemptinq to rectify

the inappropriately designed system.

The assertion here is that a better high level modeling

technique could at least alleviate the problem, by forcing the

explicit concentration of effort on the proper specification of

the system's high level design, and in a format easily under-

standable by both designers and the customers. An ADA-like nota-

tion is proposed, because it embodies those characteristics

- 24 -

important to specification engineering, is (or will be) a nota-

tion familiar to both designers and customers, is amenable to

machine processing to ascertain design completeness and con-

sistency, and will be used (by DoD policy) in the actual coding

of the logic.

Is the model presented here for the SPY-1 radar system a

convincing argument for the usefulness of the notation? The goal

of this research is not to definitively answer this question, but

to illustrate the proposition, and to assess the utility of the

technique in a nonquantitative manner. It is suggested here that

the proposed technique does satisfy a nonquantitative assessment

of its utility, by the clarity of the representation of SPY-I as

shown in the previous sections and again in the appendix. Only

more examples of the method, done by several independent study

groups and over a period of time, can provide data so that the

usefulness of the technique can be adequately assessed. It is

recommended that further study be undertaken for this purpose.

A further qualifying statement must be made. ADA is undergo-

ing (at the time of writing) a final revision of its definition,

and so it is possible (and even probable) that some portions of

ADA illustrated here may not remain in the final definition of

the language. This is one more reason for further study of the

usefulness of the modeling technique proposed here.

- 25 -

BIBLIOGRAPHY

(Andler79] Andler, S., "Predicate Path Expressions; A
High-Level Synchronization Mechanism", Carnegie-
Mellon University Report CMU-CS-79-134, August
1979.

(Davis79J Davis, A. M., and T. G. Rauscher, "Formal
Techniques and Automatic Processing to Ensure
Correctness in Requirements Specifications",
IEEE 1979 Specifications of Reliable Software,
pp. 15-35.

(Ichbiah79] Ichbiah, J. D., et. al., "Preliminary ADA
Reference Manual", Part A, and "Rational for the
Design of the ADA Programminq Language", Part B,
ACM SIGPLAN Notices, Vol. 14, No. 6, June 1979.

(Jones79] Jones, C., "A Survey of Programming nesiqn
and Specification Techniques", IEEE 1979 Specifi-
cations of Reliable Software, pp. 91-103.

[Teich77] Teichroew, D., and E. A. Hershey III, "PSL/
PSA: A Computer-Aided Technique for Structured
Documentation and Analysis of Information Processing
Systems", IEEE Trans. on Software Engineerinq,
Vol. SE-3, No. 1, Jan. 1977, pp. 41-48.

[Wegner80] Wegner, P., Programming with ADA: Intro-
duction by Means of Graduated Examples, Prentice-
Hall, 1980.

[WS-105441 A classified report, of which only unclass-
ified pages were referenced.

- 26 -

APPENDIX

This appendix lists the final form of the ADA-like model of

the SPY-1 radar system developed over the course of the research.

The extent of the model is limited due to the availahle reference

document and to the amount of manpower used. The model is res-

tated here to bring the various component parts of the SPY-1, as

presented in the body of the report, into one place where a qual-

itative assessment as to its usefulness can more easily be made.

Subordinate packages used with the "spy_l" packaqe are placed

at the end of this appendix, where they can be easily referred

to. The main package can be usefully studied with only occasional

reference to the subordinate packages.

K

- 27 -

-- the following package is to be "used"
-- in an encompassing AEGIS package

PACKAGE spy_l IS

-- the following package contains
-- type definitions for all messages
USE interface typespackage;
-- all the folowing procedures are callahle from
-- the encompassing AEGIS package and effect
-- all SPY-1 services to AEGIS
PROCEDURE c&d user services input

(m : IN c&d interface input);
PROCEDURE c&d user servicesoutput

(m : OUT-cid interface output);
PROCEDURE wcs user services input

(m : IN wcs interfaceinput);
PROCEDURE wcs user servicesoutput

(m : OUT wcs interface output);
PROCEDURE orts user services input

(m :-IN ortsinter-aceinput);
PROCEDURE orts user services output

(m : OUT orts interfaceoutput);
PROCEDURE gfcsuser services input

(m : IN gfcsinterfaceinput);
PROCEDURE gfcsuser services output

(m : OUT qfcs interfaceoutput);
PROCEDURE ates user services_input

(m : IN atesinterfaceinput);
PROCEDURE ates user servicesoutput

(m : OUT atesinterface_output);
PRIVATE

-- declaration of private data types
-- probably not needed in this package

END spy_1; -- the specification part

- 28 -

PACKAGE BODY spy l IS
-- all local declarations
USE interfunction interfaces; -- a package
PROCEDURE BODY c&d user servicesinput IS

-- all local declarations
BEGIN
-- interpret the message and invoke appropriate
-- SPY 1 control task entry points, where
-- appropriate functional tasks will be invoked
-- to carry out the request

CASE m.kind OF
WHEN changemode =>

-- request rendezvous with spy_1 control
trackstartrequest (..); --possibly with argument

WHEN change_status ->

END CASE;

END c&d user servicesinput;

-' - . k ,1.

- 29 -

-- the remaining procedures are left as
-- separately compiled entities, not shown in appendix
PROCEDURE BODY cad_userservicesoutput IS SEPARATE;
PROCEDURE BODY wcs user servicesinput IS SEPARATE;
PROCEDURE BODY wcs-user services output IS SEPARATE;
PROCEDURE BODY orts user services_input IS SEPARATE;
PROCEDURE BODY orts-user-services output IS SEPARATE;
PROCEDURE BODY gfcs-user-servicesinput IS SEPARATE;
PROCEDURE BODY gfcs user services output IS SEPARATE;
PROCEDURE BODY ates user servicesinput IS SEPARATE;
PROCEDURE BODY ates-user-servicesoutput IS SEPARATE;

-- SPY-1 control task follows; schedules all
-- requests for services coming via the above procedures
TASK spy_1_control IS

-- entry point definitions follow
ENTRY initialization command (m: IN orts interfaceinput);
ENTRY frequencychangerequest (...);
ENTRY track start_request (...);
ENTRY next beamrequest (...);
-- all others entry declarations
-- and other declarations

END spyl_control; -- the specification part
TASK BODY spy_lcontrol IS

-- local declarations
BEGIN
ACCEPT initialization command(...);

-- indirectly from ORTS via
-- orts user servicesinput procedure
-- actually there is several kinds
-- of initialization commands possible
-- in SPY-i, but are not indicated here

INITIATE search management, trackmanagement,
radarscheduling, crossgating,
beam stabilization, radar input processing,
radar-output processing, detectronprocessing,
trackprocessinq, ecmclutter_processing,
track association, load evaluation,
missile communication, historical recordinq,
switch action display_processing,
video Tormatter, eft control, dynamictesttarqets,
operability_performance

testing,

anqlecalibrationtesting, online scan tests,
transmitterpower phase test,
signal processor_?aultIsolationsuoport testinq,
nonmissiontests;
-- and whatever subtasks are needed

- 30 -

LOOP -- an "infinite" loop entered
SELECT -- an accept clause for every

-- entry point
ACCEPT frequencychangerequest

(m i IN c&d interfaceinput) O0
savedmessaqe :- m;

RND; -- calling procedure may continue
-- interpret the nessaqe and invoke
-- the appropriate set of internal
-- tasks such that the request is
-- carried out; fictitious tasks
-- are illustrated here
CASE saved message.request OP
WHEN phase change ->

change phase (savedmessage.rate);
video _ormatter ("phase chanqed");

WHEN freq_change ->
change frequency (saved messaqe.value);
video formatter ("frequency changed");

WHEN ...

END CASE;
OR ACCEPT
OR ACCEPT
OR WHEN ACCEPT

END SELECTI
END LOOP;

- 31 -

-- remaining tasks are left as separately
-- compiled units not shown in appendix
TASK searchmanagement IS SEPARATE;
TASK trackmanagement IS SEPARATE;
TASK frequencymanaqement IS SEPARATE;
TASK radarscheduling IS SEPARATE;
TASK crossgating IS SEPARATE;
TASK beam stabilization IS SEPARATE;
TASK radar_input_processing IS SEPARATE;
TASK radar outputprocessing IS SEPARATE;
TASK detection_processing IS SEPARATE;
TASK track_processing IS SEPARATE;
TASK ecm clutter processing IS SEPARATE;
TASK trackassociation IS SEPARATE;
TASK load evaluation IS SEPARATE;
TASK missile communications IS SEPARATE;
TASK historical recordinq IS SEPARATE;
TASK switch action display processinq IS SEPARATE;
TASK video formatter IS SEPARATE;
TASK eft control IS SEPARATE;
TASK dynamic_test targets IS SEPARATE;
TASK operability performance testing IS SEPARATE;
TASK angle_calibration testing IS SEPARATE;
TASK online scan tests IS SEPARATE;
TASK transmitter--powera phase test IS SEPARATE;
TASK signalprocessor _fault isolation support testinq

IS SEPARATE;
TASK nonmission tests IS SEPARATE;
-- and whatever subtasks are necessary

BEGIN -- initialization part of package
INITIATE spy_1 control;

END spy_l; -- end of complete SPY-i package

- 32 -

-- the interface message type package
-- all the following is from the reference
-- document; detailed to the extent given there
-- in some cases the detail varys slightly
-- from the assumptions used in the model

PACKAGE interface types_package IS

TYPE c&dinterface_input IS
RECORD
kind : (track data, data ack, burnthrough_rpt,
track acc-reT, radar status, burnthrough_acc_rej,
redundant track, radar load status, rsc status,
radar doctrine);

CASE k~nd OF -- question marks indicate unknown types
WHEN track data ->

no of tracks : ???;
ctsl : ???;
controlgrptrk no : ???;
weaponcontrol jndexes : ???;
time lag : ???;
amplftudeestimates : ???;
parent ctsl : ???;
type track indicators : (real, simulated);
position :-ARRAY (coordinates) OF REAL;
velocity : ARRAY (coordinates) OF REAL;
slantrange : ???;
slantrange rate : ???;
lost track Indicator : 7??;
bearIng data : ???;
elevation data : ???;
track coast count :?7;
track-indicators : (old, new);
track-mode indicators z (active, passive,

coverpulse, missile);
missile indicator : ???;
report_type : (normal, specialthreat);

WHEN data ack ->
ctsl : ???;
control _qpr trk ro :
rangerate : 7??;
status : (enable, disable);

min _bearing, max bearing : ???;
miranqe, max_ranqe :???;

- 33 -

WHEN burnthrough_rpt =>
console address : ???;
ctsl : ???;
controlgrp_trkno : ???;
timetag : ???;
elevation : ???;
bearing : ???;
target_ranges : ARRAY (no oftargets) OF REAL;

WHEN trackaccrej =>
ctsl :??;
responsecode : (accept, busy, illeqal);

WHEN rsc status =>
controlgrpstatus : (startup, ready);
radar status : (fore-off, fore-standby,

fore ready, fore-radiate, aft off,
aLt standby, aft ready, aftradiate);

WHEN burnthrouqh accrej >

c&d trk index : ???;
control grptrk_no : ???;
response code : (accept, busy, illegal);

WHEN redundant track =>
ctsl : ??f;
controlgrp_trk no : ???;

WHEN radar load status >
trk fMle_percent load : ???;
radar _percentload ; ???;
control_qrp_percentload :
timetaq : ???;
search frame time : ???;
radar status :??;
percenttrack time : ???

WHEN rsc status ->
console address : ???;
type reply : (good, bad, missed);

WHEN radar doctrine a>
-- AN/SPY-i doctrine (not given)

END CASE;
END RECORD;

U. -

- 34 -

TYPE cid_interface_output IS
RECORD
kind : (track id, auto mode parameters,
ceaserpt drop trk, trkacquisition req, .
ships-speed, burnthrough req, displayreq, V

c&d doctrine control, passive_trk data,
alert_pending);

CASE kind OF
WHEN trackid =>

ctsl : ???;
weapon control_index : ???;
radar iet trk no : ???;
category : (air, surface, clutter);
id class : (confirmed hostile,

assumed hostile, unknown, assumed friendly,
confirmed friendly, controlled frTendly);

tactically_sTgnificant : ???;
WHEN auto modeparameters =>

min _range_rate : ???;
endingbearing, starting bearing : ???;
min_range, maxrange : ???;
status : (enable, disable);

WHEN cease_rptdrop_trk ->

ctsl : ???;
control_grptrkno : ???;
weapon control index : ???;
drop_trk_indicator : ???;

WHEN track .acquisitionreq =>
timetaq : ???;
dimensional indicator : (two d, three d);
position : ARRAY (coordinates) OF REAL;
velocity : ARRAY (coordinates) OF REAL;
ctsl : ???;
weapon control index : ???;
acquisTtionindicator : (active, passive,

surface);
asimuth extent : (normal, wide);

WHEN ships speed =>
x dot, ydot : ???;

'4 - r' .~;..

- 35 -

WHEN burnthroughreq =>
ctsl : ???;
control_grp_trkno : ???;
requesttype : (high_vel, lowvel);
startrange ???;

WHEN display_req =>
console address : ???;
video formatter type : ???;
header code ?67;
display_mode (above horiz, horiz clear,

horiz mti);
WHEN c&d doctrine control =>

radar silence : (on, off);
WHEN passive trkrange_data =>

ctsl : ???;
radar trk no : ???;
range
range_rate : ???;
timetags : ???;
data source id : ???;
weaponcontrolindex : ???;
associated_patl : ???;
coast count : ???;

WHEN alertpending =>
-- notice of alert

END CASE;
END RECORD;

w *- ---- *--- ** - - - -.

- 36 -

PACKAGE interfunction interfaces IS

-- these are typical of the data structures
-- used for internal SPY-i function communication,
-- and are included here for illustrative purposes
TYPE initializationinterfaceinput IS
RECORD
kind : (initializationorders, testresultssummary,
radar statussummary, qryo_statussummary,
ates initialcomplete, transmitter-status,
loop closure confirmation);

CASE kind OF
WHEN initialization orders =>

-- initialization switch actions
-- details not known

WHEN testresultssummary =>
-- results of CAL, OPT, OLS

WHEN radarstatussummary =>
-- summary of radar operable units

WHEN gyro_statusdata =>
-- gyro data converter and gyro status data

WHEN ates initial complete =>
-- indication that radar initialization
-- can commence

WHEN transmitter status =>
-- transmitter, status, i. e., standby
-- ready. (requested and received)

WHEN loop_closureconfirmation =>
-- notification of first radar return

END CASE;
END RECORD;
TYPE initializationinterface_output IS

RECORD
kind : (xmtr state, etf test-requests,

request_startgyro, radar_systemstatus);
-- next page classified, more may follow
CASE kind OF
WHEN xmtr state ->

-- command to change xmtr state up or down
WHEN etftestrequests =>

-- none given in reference source
WHEN request_start_gyro =>

-- request to start gyro module
WHEN radarsystem_status =>

-- control group status/radar system status
-- dedicated etf-test flag or normal etf-
-- test priority

END CASE;
END RECORD;

:1.

- 37 -

TYPE frequencymanagementinput IS
RECORD

kind : (beam_position, target information,
doctrine, hardwareoperability,
missile-information);

CASE kind OF -- question marks mean unkown type
WHEN beamposition =>

bearing : ???;
elevation : ???;
sector : ???;
subsector : ???;

WHEN target information =>
range rate : ???;
mode : ???;
mti_pri _index : ???;

WHEN doctrine =>
-- frequency doctrine
fixed : ???;
prelook ???;
random ???;
-- sector doctrine
min max bearing : ???;
excludedfrequency channels : ???;
-- baseline doctrine
excluded frequency channels : ???;

WHEN hardwareoperability =>
-- frequency constrained by hardware

WHEN missile information =>
uplinkfreq, downlinkfreq ???;

END CASE;
END RECORD;

- . - . e -. , .

- 38 -

TYPE radarscheduling_input IS
RECORD
kind : (search lists_special, radiationdoctrine,

time_sych, track beam scheduled,
ships motion matrix, radar silence,
waveform information, mode-status,
xtmr_state, tracktimecounter reset);

CASE kind OF
WHEN search lists-special =>

-- HS and AHS and special requests
stc data : ?7?;
beamposition : ???;
blanking_gates : ???;
cluttergates : ???;
mode : ???;
instrumentedrange : ???;
clutter map_flag : ???;
end of frame flag : ???;

WHEN radiation-doctrine =>
-- relative bearings of radiation
-- inhibit sectors
power option : (high, low, off);

WHEN time-sync >
-- resynchronization time

WHEN track beam scheduled =>
-- track numbers by priority
-- track file

WHEN shipsmotion matrix >
-- stable deck orientation
-- azimuth limits for search & track
-- azimuth limit slope

WHEN radar silence =>
-- radiation inhibit

WHEN waveform information =>
-- frequency channel and bands
-- phase code pri and dwell time for mti

WHEN mode status =>
-- waveform substitution

WHEN xmtr state >
-- xmtr state

WHEN track time counter reset >
-- reset-for track time counter

END CASE;
VND RECORD;
-- all the remaining interfunction interfaces

END interfunctioninterfaces;

S - -

- 39 -

INITIAL DISTRIBUTION LIST

1. Defense Documentation Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93940

3. Earl E. McCoy 10
Department of Computer Science
Code 52My
Naval Postgraduate School
Monterey, California 93940

4. Uno R. Kodres
Department of Computer Science 10
Code 52Kr
Naval Postgraduate School
Monterey, California 93940

5. Department of Computer Science 30
Code 52
Naval Postgraduate School
Monterey, California 93940

